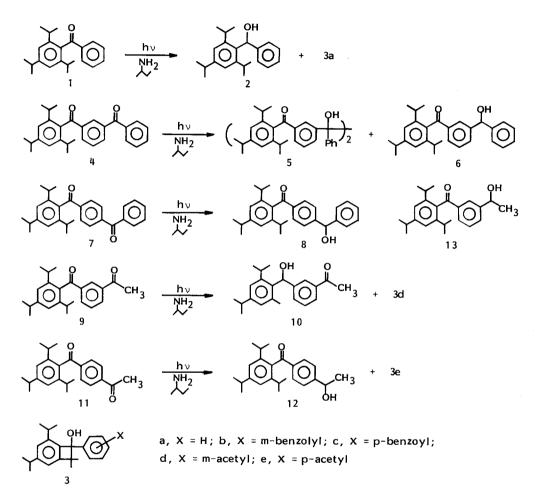
PHOTOREDUCTION OF 2,4,6-TRIISOPROPYLBENZOPHENONES WITH S-BUTYLAMINE¹

Yoshikatsu Ito,* Nobuhiro Kawatsuki, and Teruo Matsuura

Department of Synthetic Chemistry, Faculty of Engineering, Kyoto University, Kyoto 606, Japan


Summary: Photoreduction products and quenching rates by s-butylamine of triplets of the title ketones 1, 4, 7, 9, and 11 indicate that the electronic excitation in 9 in completely shifted toward the hindered carbonyl group rather than the acetyl carbonyl, while that in 11 is distributed over both of the carbonyl groups in a molecule.

It is a fundamental problem to see whether the n,π^* excitation in aromatic diketones can be described as an intramolecular energy migration or a resonance between A and B. We have shown in the previous paper, mainly based on the results of spectroscopic and triplet lifetime measurements, that the energy migration is the case for the meta-substituted diketones (R = Ph or 2,4,6-triisopropylphenyl) and the resonance is the case for the para-substituted ones (R = Ph or 2,4,6-triisopropylphenyl).² In order to confirm this difference we then studied the photoreduction of a series of 2,4,6-triisopropylbenzophenones 1, 4, 7, 9, and 11 with s-butylamine (BA).

 $\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$

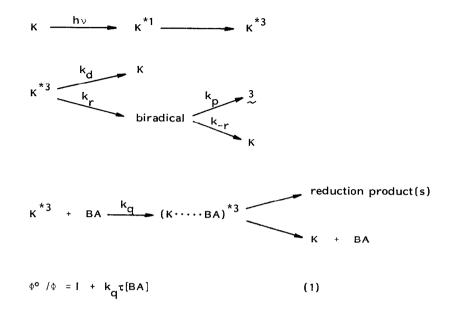
Upon photolysis without BA these triisopropylbenzophenones produce quantitatively the corresponding benzocyclobutenols 3, as is already reported.³ In the presence of the amine (0.5 - 1.0 M) photoreduction of the carbonyl group occurred (Table I). It can be seen that 1 and 9, where the hindered carbonyls are reduced, and the para-substituted diketones (7 and 11) give products of a hydrol type and that the meta-substituted diketone (4) and benzophenone,^{4a} where the unhindered carbonyls are reduced, give products of a pinacol type as major products.

Table I demonstrates that only one of the two carbonyl groups in these diketone molecules was selectively reduced. It appears natural from steric hindrance that the reduction of 4 and 7 occurred at the unhindered carbonyl group in each case. It is, however, noticeable that 9 underwent photoreduction only at the hindered carbonyl group and, in sharp contrast, 11 at the acetyl group. In the case of 9 almost all fraction of the excitation must be present on the hindered carbonyl group, as is expected from the intramolecular energy migration: the triplet energy of acetophenone (74.1 kcal/mol) is much higher than that of 1 (69.1 kcal/mol²). On the other hand, considering the experimental fact that the acetyl group of 11 was selectively reduced and that its k_a was much larger than k_a values of 1 and 9 but comparable to those of 4 and 7 (vide infra), the excitation energy is probably distributed over both of the carbonyl groups in the case of [].

Quantum yields of 3 as a function of BA concentration (0.005 - 1 M) were measured in benzene and acetonitrile. From slope of a linear⁶ plot of ϕ°/ϕ vs. [BA], the value of $k_{q}\tau$ was obtained according to eq (1), where ϕ° is the quantum yield for the benzocyclobutenols 3 in the absence of BA, k_{q} is the rate constant for ketone triplet quenching by the amine BA and τ (= 1/(k_{d} + k_{r})) is the triplet lifetime of the ketones. Since τ is available from usual diene quenching experiments,⁷ k_{q} can be calculated (Table II). The k_{q} value for 4 and 7 was nearly an order of magnitude larger than that for 1 and 9 and that for 11 was intermediate of them.⁸ Thus it seems that in the case of 9 the electronic excitation is localized at the hindered carbonyl group and that in the cases of 4, 7 and 11 the excitation is delocalized over both of the carbonyl groups in the molecule.

In summary, the present results relating to the meta- and para-substituted diketones 9 and 11 are consistent with the representations $A \ddagger B$ and $A \leftrightarrow B$, respectively.

starting ketone	solvent	concn. of BA, M	quantum yields ^b		
			hindered C=O redn.	unhindered C=0 redn.	benzocyclo- butenol
1	^С б ^Н б	1.0	2 (0.03)	-	3a (0.11)
	MeCN	1.0	2 (0.14)	-	3a (0.05)
4 ∼	с ₆ н ₆	0.5	nd	5(0.20), 6(0.03)	nd
	MeCN	0.5	nd	5_{\sim} (0.31), 6_{\sim} (0.09)	nd
7~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	^С 6 ^Н 6	0.5	nd	8 (0.76)	nd
	MeCN	0.5	nd	8 (0.77)	nd
9 ~	с ₆ н ₆	0.5	10 (trace)	nd ^C	3d (0.043)
	MeCN	0.5	10 (0.019)	nd ^C	3d (0.017)
11	^с 6 ^н 6	0.5	nd	12 (0.004)	3e (0.013)
	MeCN	0.5	nd	12 (0.003)	3e (0.010)


Table I. Quantum Yields for Reduction Products and Benzocyclobutenols in the Presence of s-Butylamine (BA)^a

^aA degassed solution of 0.05 M in the starting ketone was irradiated at 313 nm at 25 °C to conversion < 5%. Products other than listed in Table I were negligible by HPLC. ^bThe abbreviation nd denotes that products were not detected even in a preparative run. ^cThe absence of 13 was confirmed by preparation of an authentic sample of 13 by LiAlH(0-t-Bu)₃ reduction of 9.

ketone	k _q τ, M ^{−1}		τîn	k in benzene,
ketone	^C 6 ^H 6	MeCN	benzene, ns	M ⁻¹ s ⁻¹
1	5.2	12.6	90 ^a	5.8 x 10 ⁷
<u>4</u>	49.6	51.1	114 ^a	4.4 x 10 ⁸
7	45.2	59.7	91 ^a	5.0 x 10 ⁸
9	9.9	16.3	127	7.6 × 10 ⁷
1 <u>1</u>	25.1	26.3	114	2.2 \times 10 ⁸

Table II. Quenching Constant $(k_q^{}\tau)$ and Quenching Rate $(k_q^{})$ by s-Butylamine

^aReference 2.

Acknowledgment. We are indebted to the Ministry of Education, Science and Culture of Japan for a financial aid under the special research project on utilization of solar energy.

References and Notes

- (1) Photoinduced reaction, part 156.
- (2) Ito, Y.; Kawatsuki, N.; Matsuura, T. Submitted for publication.
- (3) Ito, Y.; Giri, B. P.; Nakasuji, M.; Hagiwara, T.; Matsuura, T. J. Am. Chem. Soc. 1983, 105, 1117.
- (4) (a) Cohen, S. G.; Chao, H. M. J. Am. Chem. Soc. 1968, 90, 165. (b) Cohen, S. G.; Stein, N. M. Ibid. 1971, 93, 6542.
- (5) We have found that m-benzoylbenzophenone is photoreduced to a pinacol type (a 1 : 1 mixture of d1 and meso isomer, 55 % isolation yield) and that p-benzoylbenzophenone to a hydrol type (68 % isolation yield).
- (6) Thus the variation of the $k_p/(k_p + k_{-r})$ value with the amine concentration is not important, as is expected from the previously described effect of pyridine.⁷
- (7) Ito, Y.; Nishimura, H.; Umehara, Y.; Yamada, Y.; Tone, M.; Matsuura, T. J. Am. Chem. Soc. 1983, 105, 1590.
- (8) Cohen estimated the k_q value for benzophenone as 2.3 x $10^8 \text{ M}^{-1}\text{s}^{-1}$ in benzene.^{4b} (Received in Japan 28 February 1984)